# High-pressure cycloaddition reactions of 3-bromo-1,5azulenequinone and 3-bromo-1,7-azulenequinone with dienophiles 

Akira Mori, ${ }^{* a}$ Yong Zhe Yan, ${ }^{b}$ Hitoshi Takeshita, ${ }^{* c}$ and (the late) Tetsuo Nozoe ${ }^{d}$<br>${ }^{a}$ Institute of Advanced Material Study, 86, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan<br>${ }^{b}$ Graduate School of Engineering Sciences, 39, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan<br>${ }^{c}$ Tohwa Institute for Orient Studies, Tohwa University, Ohkawachi, Buzen, Fukuoka 828-0082, Japan<br>${ }^{d}$ Tokyo Research Laboratories, Kao Corporation, Bunka, Sumida-ku, Tokyo 131-0044, Japan

Received (in Cambridge) 25th June 1998, Accepted 12th August 1998


#### Abstract

The high-pressure Diels-Alder reaction of 3-bromo-1,5-azulenequinone and 3-bromo-1,7-azulenequinone with several dienophiles under 300 MPa pressure gave $1: 1[4+2]$ cycloadducts in good yields. Bromoazulenequinones reacted with dienophiles on the seven-membered ring in such a way as not to produce a cyclopentadienone moiety.


#### Abstract

Azulenequinones are regarded to be extended quinones and isomers of naphthoquinone. From theoretical calculations on the stabilities of azulenequinones, 1,2-, 1,5- and 1,7-azulenequinones were suggested to be stable. ${ }^{1}$ In 1984, Scott et al. reported the synthesis of 1,5 -azulenequinone and 1,7 -azulenequinone and their Diels-Alder reaction with 1,3-diphenylbenzo [c]furan, which gave single $[4+2]-[6+4]$ cycloadducts, respectively. ${ }^{2}$ The stereochemistry and the mechanism of the adducts, however, have not been defined. Recently, a practical method to prepare 3-bromo-1,5-azulenequinone $\mathbf{B - 5 - A Q}$ and 3-bromo-1,7-azulenequinone $\mathbf{B - 7 - A Q}$ has been developed from the bromination of azulene in an aqueous medium. ${ }^{3}$ The convenient preparation of bromoazulenequinones made it possible to investigate their chemical properties systematically. ${ }^{4}$ It is known that tropone behaves as $2 \pi, 4 \pi, 6 \pi$ and $8 \pi$ components ${ }^{5}$ in cycloadditions. Since both B-5-AQ and B-7-AQ contain a tropone and a cyclopentenone structure, it would be worth investigating cycloadditions of azulenequinones in respect to comparing them with those of tropones. ${ }^{6}$


## Results and discussion

## Cycloaddition of B-5-AQ with acyclic monoolefins

The Diels-Alder reaction of B-5-AQ with ethene $\mathbf{1}$ occurred by heating a chlorobenzene solution in an autoclave ( 4 MPa ) at $150^{\circ} \mathrm{C}$ for 5 h to afford a single product, compound 2, in $55 \%$ yield. The mass spectrum and elemental analysis of product 2 showed that it is a 1:1-cycloadduct of substrates $\mathbf{B - 5 - A Q}$ and $\mathbf{1}$. The ${ }^{1} \mathrm{H}$ NMR spectral data revealed four olefinic protons, a methine proton, and four methylene protons. This is characteristic of the dihydrohomobarrelenone system, which indicated that the reaction occurred on the tropone part to give a $[4+2]$ adduct. The IR spectrum showed the presence of two kinds of $\alpha, \beta$-unsaturated carbonyl groups and the ${ }^{13} \mathrm{C}$ NMR spectrum of product 2 disclosed 12 lines. These data supported the proposed structure of compound 2 as tricyclo[6.2.2.0 ${ }^{1,5}$ ]dodecane-3,5,9-triene-2,7-dione.

When a chlorobenzene solution of $\mathbf{B - 5 - A Q}$ and styrene $\mathbf{3}$ was heated at $130^{\circ} \mathrm{C}$ under 300 MPa , two adducts $\mathbf{4}$ and 5 were obtained in 25 and $55 \%$ yield, respectively. Their mass spectra were consistent with a 1:1-adduct between substrates $\mathbf{B}-\mathbf{5}-\mathbf{A Q}$ and 3 and ${ }^{1} \mathrm{H}$ NMR spectra revealed four olefinic proton signals, two methine proton signals, and two methylene proton
signals. These data suggested that products $\mathbf{4}$ and $\mathbf{5}$ were derivatives of compound $\mathbf{2}$. The splitting pattern of the bridgehead proton signal $[\delta 3.78(\mathrm{ddm}, J 8.4$ and 6.2 Hz$)$ for 4 and 3.78 (ddm, $J 7.7$ and 6.6 Hz ) for 5 ] indicated that the phenyl groups of compounds $\mathbf{4}$ and 5 were located at C-11. The stereochemistry of the phenyl group of compound $\mathbf{5}$ was determined to be $\beta$ by the difference in chemical shift of the olefinic proton signals at C-3; the olefinic proton at C-3 of product 5 appeared at $\delta 6.32$, which is to higher field than that for product 4 at $\delta 6.71$. This should be an anisotropy effect of the phenyl group.

Thus, the reaction was not stereoselective, but regioselective. The preferential formation of the exo adduct suggests that the cycloaddition proceeded in a thermodynamically controlled manner under 300 MPa pressure.
In the reaction of $\mathbf{B - 5 - A Q}$ with acrylonitrile $\mathbf{6}$, two adducts ( $\mathbf{7}$ and $\mathbf{8}$ ) were obtained in 17 and $31 \%$ yield, respectively. Their mass spectra were consistent with $1: 1$ adducts and the ${ }^{1} \mathrm{H}$ NMR spectrum revealed four olefinic proton signals and four methine proton signals. In the ${ }^{1} \mathrm{H}$ NMR spectrum of product 7 , a methine proton signal at C-8 appeared at $\delta 3.78$ (ddm, $J 8.1$ and 7.0 Hz ), which did not couple with a methine proton signal of $\mathrm{C}-11$ at $\delta 3.21$ and showed correlation to the signal at $\delta 2.39$. Furthermore, the methine proton at $\mathrm{C}-11$ behaved as a doublet with additional splittings; these spectral features indicated that the stereochemistry of the methine proton at $\mathrm{C}-11$ was $\beta$. In the ${ }^{1} \mathrm{H}$ NMR spectrum of product $\mathbf{8}$, the corresponding methine proton signal at $\mathrm{C}-11$ appeared at $\delta 3.19$, and its coupling constants, $J 10.6$ and 6.6 Hz , with the adjacent C-12 proton eliminated structures other than that depicted.

## Cycloaddition of B-5-AQ with cyclic olefins

When a chlorobenzene solution of $\mathbf{B - 5}-\mathbf{A Q}$ and $N$-phenylmaleimide 9 was heated at $120^{\circ} \mathrm{C}$ under 300 MPa , a $1: 1$ [ $4+2$ ] adduct $\mathbf{1 0}$ was isolated in $70 \%$ yield. The ${ }^{1} \mathrm{H}$ NMR spectral features were markedly different from those of compound $\mathbf{2}$ in respect of the chemical shifts. From the coupling constant of the bridgehead proton at $\delta 4.34(\mathrm{dm}, J 7.7 \mathrm{~Hz})$, product $\mathbf{1 0}$ was an endo adduct as shown. Under the same conditions, B-5-AQ and $N$ - $p$-tolylmaleimide $\mathbf{1 1}$ afforded a single product, compound 12, in $70 \%$ yield, which was also an endo adduct.

Similarly, the reaction of $\mathbf{B - 5 - A Q}$ and acenaphthylene $\mathbf{1 3}$ gave two $1: 1$ adducts ( $\mathbf{1 4}$ and $\mathbf{1 5}$ ) in 12 and $15 \%$ yield,


Scheme 1
respectively. The main product $\mathbf{1 5}$ was an exo $[4+2]$ adduct from the spectral data whereas the minor one $\mathbf{1 4}$ was an endo $[4+2]$ adduct.

## Cycloaddition of B-5-AQ with bicyclo[2.2.1]heptadienes

The reactions of $\mathbf{B - 5 - A Q}$ with 2,3-bis(methoxycarbonyl)-7oxabicyclo[2.2.1]heptadiene $\mathbf{1 6}$ and its 1,4-dimethyl derivative 18 gave endo $[4+2]$ adducts ( $\mathbf{1 7}$ and 19), implying reaction of the tropone moiety and substrates $\mathbf{1 6}$ and $18 .{ }^{7}$ Similarly, the reaction of B-5-AQ with 1,4-epoxy-1,4-dihydronaphthalene 20 gave the corresponding endo [4+2] adduct 21 as the sole product. All these reactions of $\mathbf{B - 5 - A Q}$ are shown in Scheme 1.

## Cycloaddition of B-7-AQ with dienophiles

The reactivity of $\mathbf{B - 7 - A Q}$ with ethene $\mathbf{1}$ was similar to that of B-5-AQ, and gave a single 1:1 [4 + 2] adduct, compound 22, by heating for 3 h in an autoclave. The reactivity of $\mathbf{B}-7-\mathbf{A Q}$ with other dienophiles, however, was lower than that of $\mathbf{B}-5-\mathbf{A Q}$. From the reaction of styrene $\mathbf{3}$ and $\mathbf{B}-7-\mathbf{A Q}, 1: 1[4+2]$ adducts 23 and 24 were obtained. With acrylonitrile $\mathbf{6}$ it was necessary to heat the reactants for prolonged period, 36 h , under similar conditions to obtain the stereoisomeric 1:1 [4 + 2] adducts $\mathbf{2 5}$ and 26. A single $1: 1[4+2]$ cycloadduct 27 was formed from the reaction of $\mathbf{B}-\mathbf{7}-\mathbf{A Q}$ with $N$-phenylmaleimide $\mathbf{9}$ under the conditions used for the reaction of $\mathbf{B}-5-\mathbf{A Q}$ with dienophile 9 . The reaction of $\mathbf{B}-\mathbf{7}-\mathbf{A Q}$ and bicycle $\mathbf{1 6}$ gave the corresponding endo $[4+2]$ adduct $\mathbf{2 8}$ in $53 \%$ yield. These reactions of $\mathbf{B - 7}-\mathbf{A Q}$ are presented in Scheme 2.
${ }^{13}$ C NMR Chemical-shifts assignment of 11-cyano and 11-phenyl adducts
The ${ }^{13} \mathrm{C}$ NMR spectra provided a sound basis for structure identification of the 11-cyano- and 11-phenyl-homobarrelenone derivartives. Table 1 summarizes these data together with the chemical-shift differences of each carbon of the cyano and phenyl derivatives calculated therefrom.

Among the derivatives, the chemical shift differences ( $\Delta \delta$ ) were obtained from comparison with their parent compounds 2 and 22. As can be seen in Table 1, compounds having the same


Scheme 2
stereochemistry show very similar chemical shifts. For example, in the $11 \alpha$-cyano compounds, $\Delta \delta$ for $\mathrm{C}-8$ were +2.7 and +2.1 ppm and those of $\mathrm{C}-12$ were -5.5 and -7.3 . In the $11 \alpha$-phenyl compounds, $\Delta \delta$ for C-8 were -0.6 and -0.8 and those for $\mathrm{C}-12$ were -11.6 and -12.0 ppm . Also, in the series with the $11 \beta$-cyano group, $\Delta \delta$ for $\mathrm{C}-8$ were +1.0 and +1.2 and

Table $1{ }^{13} \mathrm{C}$ NMR Spectral data of $1: 1$ adducts ${ }^{a}$

|  | 2 | 4 ( $\alpha-\mathrm{Ph}$ ) | 5 ( $\beta-\mathrm{Ph}$ ) | $7(\alpha-\mathrm{CN})$ | 8 ( $\beta$-CN) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C-1 | 54.4 | $58.2(-3.8)$ | 60.5 (-6.1) | 52.4 (+2.0) | 55.0 (-0.6) |
| C-2 | 201.8 | 199.0 (+2.8) | 201.1 (+0.7) | 196.0 (+5.8) | 198.6 (+3.2) |
| C-3 | 133.1 | $131.4(+1.7)$ | 134.5 (-1.4) | $130.1(+3.0)$ | 132.0 (+1.1) |
| C-4 | 159.0 | 159.8 (-0.8) | 156.8 (+2.2) | 154.0 (+5.0) | 154.9 (+4.1) |
| C-5 | 151.6 | $150.5(+1.1)$ | 152.8 (-1.2) | 150.6 (+1.0) | 153.7 (-2.1) |
| C-6 | 129.9 | 131.3 (-1.4) | 129.1 (+0.8) | 129.9 (0) | $131.1(-1.2)$ |
| C-7 | 196.7 | 196.4 (+0.3) | 196.7 (0) | 193.0 (+3.7) | 194.1 (+2.6) |
| C-8 | 51.8 | $52.4(-0.6)$ | $52.2(-0.4)$ | 49.1 (+2.7) | $50.8(+1.0)$ |
| C-9 | 138.9 | 141.6 (-2.7) | 140.1 (-1.2) | 138.0 (+0.9) | 140.0 (-1.1) |
| C-10 | 123.3 | 123.1 (+0.2) | 123.8 (-0.5) | 123.3 (0) | 124.3 (-1.0) |
| C-11 | 30.4 | 49.7 (-19.3) | 48.6 (-18.2) | $31.3(-0.9)$ | 32.0 (-1.6) |
| C-12 | 21.0 | 33.5 (-11.6) | 29.3 (-7.4) | $27.4(-5.5)$ | 26.6 (-4.7) |
| CN |  |  |  | 117.6 | 117.8 |
|  | 22 | 23 ( $\alpha-\mathrm{Ph}$ ) | 24 ( $\beta-\mathrm{Ph}$ ) | 25 ( $\alpha-\mathrm{CN}$ ) | 26 ( $\beta-\mathrm{CN}$ ) |
| C-1 | 55.3 | $58.1(-2.8)$ | 60.6 (-5.3) | $55.0(+0.3)$ | $56.8(-1.5)$ |
| C-2 | 197.3 | 196.6 (+0.7) | 197.1 (+0.2) | $194.2(+3.1)$ | 194.6 (+2.7) |
| C-3 | 134.9 | $132.8(+2.1)$ | 136.8 (-1.9) | $133.1(+1.8)$ | 133.7 (+1.2) |
| C-4 | 164.1 | $164.2(-0.1)$ | $162.1(+2.0)$ | $160.3(+3.8)$ | 158.0 (+6.1) |
| C-5 | 153.2 | 154.8 (-1.6) | $151.4(+1.8)$ | 149.3 (+3.9) | 149.0 (+4.2) |
| C-6 | 128.8 | 130.3 (-1.5) | 129.7 (-0.9) | 129.1 (-0.3) | 129.7 (-0.9) |
| C-7 | 190.7 | 190.5 (+0.2) | 190.7 (0) | 188.6 (+2.1) | 188.7 (+2.0) |
| C-8 | 52.0 | $52.8(-0.8)$ | $52.3(-0.3)$ | 49.9 (+2.1) | 50.8 (+1.2) |
| C-9 | 136.8 | $141.2(-4.4)$ | 138.3 (-1.5) | 139.6 (-2.8) | 139.7 (-2.9) |
| C-10 | 122.5 | $121.9(+0.6)$ | 122.9 (-0.4) | $123.6(-1.1)$ | 123.8 (-1.3) |
| C-11 | 32.3 | 52.5 (-20.2) | 48.9 (-16.6) | 35.0 (-2.7) | 34.2 (-1.9) |
| C-12 | 22.1 | 34.1 (-12.0) | 31.0 (-8.9) | 29.4 (-7.3) | 26.8 (-4.7) |
| CN |  |  |  | 119.4 | 117.6 |

${ }^{a}+$ Means low-field shift, and - means high-field shift, compared with the chemical shift of the corresponding carbon in the unsubstituted parent adduct 2 or 22.

those of $\mathrm{C}-12$ were -4.7 ppm . In the series with an $11 \beta$-phenyl group, $\Delta \delta$ for $\mathrm{C}-8$ were -0.4 and -0.3 and those of $\mathrm{C}-12$ were -7.4 and -8.9 ppm . These spectral data supported the assigned structures.

## Conclusions

High-pressure conditions were conveniently applied to the Diels-Alder reaction of B-5-AQ and B-7-AQ with dienophiles. Stable monoadducts were obtained in good yield. Consequently, compounds $\mathbf{B - 5 - A Q}$ and $\mathbf{B - 7 - A Q}$ always behaved as tropone derivatives to furnish $1: 1[4+2]$ cycloadducts. The sites of the reaction were determined not to yield a chemically reactive and electronically unstable cyclopentadienone chromophore.

## Experimental

Elemental analyses were performed at the elemental analysis laboratory of the Institute of Advanced Material Study, Kyushu University. Mps were obtained on a Yanagimoto Micro Melting Point Apparatus and are uncorrected. The NMR spec-
tra were measured on JEOL GSX 270H, LA 400, and LA 600 spectrometers for samples in $\mathrm{CDCl}_{3}$; chemical shifts are expressed in $\delta$-units and $J$-values are given in Hz . Mass spectra were measured with JEOL 01SG-2 and JMS-70 spectrometers. IR spectra were recorded on a JASCO IR-A102 spectrometer with KBr disks. The stationary phase for column chromatography was Wakogel C-300 and the eluent was a mixture of ethyl acetate and hexane. Crystalline compounds were recrystallized from a mixture of hexane and chloroform.

## Thermal reaction of B-5-AQ with ethene 1

A chlorobenzene solution ( $15 \mathrm{~cm}^{3}$ ) of $\mathbf{B - 5 - A Q}(25 \mathrm{mg})$ was heated with ethene $\mathbf{1}$ in an autoclave ( 4 MPa ) at $150^{\circ} \mathrm{C}$ for 5 h . After the volatile material had been removed in vacuo, the residue was chromatographed on a silica gel column to give adduct $2(15.4 \mathrm{mg}, 55 \%)$ as crystals, mp $153-155^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 1.9-2.1(4 \mathrm{H}$, $\mathrm{m}), 3.6-3.7(1 \mathrm{H}, \mathrm{m}), 6.04(1 \mathrm{H}, \mathrm{dd}, J 1.8$ and 0.7$), 6.28(1 \mathrm{H}, \mathrm{dd}$, $J 8.4$ and 1.5$), 6.32(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and 6.6$)$ and $6.79(1 \mathrm{H}, \mathrm{d}$, $J 0.7 \mathrm{~Hz}) ; \delta_{\mathrm{C}} 21.9,30.4,51.8,54.4,123.3,129.9,133.1,138.9$, 151.6, 159.0, 196.7 and 201.8; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1713,1663$ and 1532; $m / z(\%) 266\left(\mathrm{M}^{+}\right.$for $\left.{ }^{81} \mathrm{Br}, 16\right), 264\left(\mathrm{M}^{+}\right.$for $\left.{ }^{79} \mathrm{Br}, 19\right), 238$ (38), 236 (39), 157 (49), 128 (100) and 77 (30); $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm}$ 230.9 ( 8950 ) and $283.0(15800)$ (Found: C, 54.7; H, 3.6. Calc. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrO}_{2}: \mathrm{C}, 54.37$; H, 3.42\%).

## High-pressure reactions of azulenequinones and dienophiles (general procedure)

A mixture of $\mathbf{B - 5}-\mathbf{A Q}(47.4 \mathrm{mg})$ and styrene $3(41 \mathrm{mg})$ in chlorobenzene ( $5 \mathrm{~cm}^{3}$ ) in a screw-capped Teflon cylinder was replaced in a pressure vessel filled with silicone oil as transmission medium. Reactions under a pressure of 300 MPa , which was applied via an oil-compressor and measured by a Heise-Bourdon gauge, were carried out using a Hikari-koatsu KP-5-B high-pressure reactor. The temperature was kept at $130^{\circ} \mathrm{C}$ for 15 h . After the mixture had been cooled and depressurized, the volatile material was removed in vacuo. The
residue was chromatographed on a silica gel column to give adducts $\mathbf{4}(16.6 \mathrm{mg}, 25 \%), 5(36 \mathrm{mg}, 55 \%)$ and unchanged B-5AQ ( 2 mg ). Compound 4: yellow crystals, $\mathrm{mp} 173-175^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.19(1 \mathrm{H}$, ddd, $J 14.6,6.2$ and 4.4$), 2.75(1 \mathrm{H}$, ddd, $J$ 14.6, 9.9 and 0.7 ), $3.48(1 \mathrm{H}, \mathrm{dd}, J 9.9$ and 4.4), $3.78(1 \mathrm{H}, \mathrm{ddm}$, $J 8.4$ and 6.2 ), $6.11(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and 0.7$), 6.25(1 \mathrm{H}$, ddd, $J 8.4,1.1$ and 0.7$), 6.62(1 \mathrm{H}, \mathrm{t}, J 8.4), 6.71(1 \mathrm{H}, \mathrm{s}), 7.0-7.1(2 \mathrm{H}$, m) and $7.2-7.3(3 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}} 33.5,49.7,52.4,58.2,123.1,127.5$, 128.1 (2 C), 128.7 (2 C), 131.3, 131.4, 139.2, 141.6, 150.5, 159.8, 196.4 and 199.0; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1719,1660,1627,1539,1493$ and 1268; $m / z(\%) 342\left(\mathrm{M}^{+}\right.$for $\left.{ }^{81} \mathrm{Br}, 43\right), 340\left(\mathrm{M}^{+}\right.$for $\left.{ }^{79} \mathrm{Br}, 35\right)$, 238 (5), 236 (10), 104 (100) and 77 (6); $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 224.0$ sh ( $\varepsilon 11$ 940), 256.8sh ( 9350 ) and 282.6 (14 890) (Found: C, 63.6; $\mathrm{H}, 4.0$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{BrO}_{2}: \mathrm{C}, 63.36 ; \mathrm{H}, 3.84 \%$ ). Isomer 5: yellow crystals, mp $148.5-149.5^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 2.28(1 \mathrm{H}, \mathrm{dd}, J 14.6$ and 7.3), $2.52(1 \mathrm{H}, \mathrm{ddd}, J 14.6,9.9$ and 6.6$), 3.50(1 \mathrm{H}, \mathrm{dd}, J 9.9$ and 7.3$)$, $3.78(1 \mathrm{H}$, ddm, $J 7.7$ and 6.6$), 6.25(1 \mathrm{H}$, dd, $J 1.5$ and 0.7$), 6.32(1 \mathrm{H}, \mathrm{s}), 6.35(1 \mathrm{H}, \mathrm{d}, J 8.4), 6.42(1 \mathrm{H}$, dd, $J 8.4$ and 7.7), 7.00-7.10 ( $2 \mathrm{H}, \mathrm{m}$ ) and 7.20-7.25 ( $3 \mathrm{H}, \mathrm{m}$ ); $\delta_{\mathrm{C}} 29.3$, $48.6,52.2,60.5,123.8,127.9,128.5$ (4 C), 129.1, 134.5, 137.8, 140.1, 152.8, 156.8, 196.7 and 201.1; $v_{\max }\left(\mathrm{KBr}^{2} / \mathrm{cm}^{-1} 1719\right.$, 1670, 1626, 1537, 1453 and 1266; m/z (\%) $342\left(\mathrm{M}^{+}\right.$for $\left.{ }^{81} \mathrm{Br}, 65\right)$, $340\left(\mathrm{M}^{+}\right.$for $\left.{ }^{79} \mathrm{Br}, 55\right), 238$ (17), 236 (13), 104 (100) and 91 (4); $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 251.5(\varepsilon 10490)$ and 276.6sh (7500) (Found: C, 63.6; H, 3.9\%).

## Reaction of B-5-AQ with acrylonitrile 6

Following the general procedure, a chlorobenzene solution of B-5-AQ ( 47 mg ) and acrylonitrile $\mathbf{6}(10 \mathrm{mg})$ was heated to give adducts $7(10 \mathrm{mg}, 17 \%)$ and $\mathbf{8}(18 \mathrm{mg}, 31 \%)$. Compound 7 : yellow powder, $\mathrm{mp} 105-106{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.39(1 \mathrm{H}$, ddd, $J 14.7,7.0$ and 2.9$), 2.60(1 \mathrm{H}, \mathrm{dd}, J 14.7$ and 9.9$), 3.21(1 \mathrm{H}, \mathrm{dd}, J 9.9$ and 2.9), $3.78(1 \mathrm{H}, \mathrm{ddm}, J 8.1$ and 7.0$), 6.12(1 \mathrm{H}, \mathrm{d}, J 2.2), 6.40$ $(1 \mathrm{H}, \mathrm{d}, J 8.4), 6.54(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and 8.1$)$ and $6.89(1 \mathrm{H}, \mathrm{s})$; $\delta_{\mathrm{C}} 27.4,31.3,49.1,52.4,117.6,123.3,129.9,130.1,138.0,150.6$, 154.0, 193.0 and $196.0 ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2242,1715,1670,1539$, 1453 and 1263; $m / z(\%) 291\left(\mathrm{M}^{+}\right.$for $\left.{ }^{81} \mathrm{Br}, 50\right), 289\left(\mathrm{M}^{+}\right.$for ${ }^{79} \mathrm{Br}$, 45), 263 (31), 238 (23), 236 (19), 155 (52), 127 (70) and 77 (70); $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{cm}^{-1} 231.5(\varepsilon 8070)$ and 284.6 (13 950) (Found: C, 53.5; H, 3.0; N, 4.95. Calc. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrNO}_{2}$ : C, 53.82; H, 2.78; $\mathrm{N}, 4.83 \%$ ). Isomer 8: yellow powder, $\mathrm{mp} 215-216^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 2.34$ ( 1 H , dddd, $J 14.3,6.6,1.1$ and 0.7 ), 2.53 ( 1 H , ddd, $J 14.3$, 10.6 and 6.2), $3.19(1 \mathrm{H}, \mathrm{dd}, J 10.6$ and 6.6), $3.72(1 \mathrm{H}, \mathrm{ddm}, J 8.4$ and 6.2), $6.22(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and 0.7$), 6.27(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and 1.1), $6.42(1 \mathrm{H}, \mathrm{t}, J 8.4)$ and $6.97(1 \mathrm{H}, \mathrm{d}, J 0.7) ; \delta_{\mathrm{c}} 26.6,32.0$, $50.8,55.0,117.8,124.3,131.1,132.0,140.0,153.7,154.9,194.1$ and 198.6; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2238, 1719, 1670, 1626, 1537, 1453 and 1266; m/z (\%) $291\left(\mathrm{M}^{+}\right.$for $\left.{ }^{81} \mathrm{Br}, 34\right), 289\left(\mathrm{M}^{+}\right.$for $\left.{ }^{79} \mathrm{Br}, 31\right)$, 263 (30), 238 (16), 236 (23), 155 (45), 127 (77) and 77 (19); $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 251.5(\varepsilon 10140)$ and 276.6sh (7250) (Found: C, 53.6; H, 2.9; N, 4.8\%).

## Reaction of B-5-AQ with $\mathbf{N}$-phenylmaleimide 9

Following the general procedure, a chlorobenzene solution of B-5-AQ ( 24 mg ) and $N$-phenylmaleimide $9(20 \mathrm{mg})$ was heated to give adduct $10(28.7 \mathrm{mg}, 70 \%)$ as a powder, $\mathrm{mp} 219-220^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 3.52(1 \mathrm{H}, \mathrm{d}, J 8.4), 3.66(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and 1.8$), 4.34(1 \mathrm{H}$, $\mathrm{dm}, J 7.7), 6.14(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and 0.7$), 6.38(1 \mathrm{H}$, ddd, $J 8.4$, 1.8 and 1.1), $6.49(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and 7.7$), 6.98(1 \mathrm{H}, \mathrm{s}), 7.22-$ $7.28(2 \mathrm{H}, \mathrm{m})$ and $7.4-7.45(3 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 41.8,47.4,52.3,52.4$, 122.2, 125.2 (2 C), 128.0, 128.2 (2 C), 129.4, 129.8, 130.3, 139.2, 148.4, 157.4, 169.5, 173.1, 190.7 and $194.6 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1727, 1670, 1628, 1539 and 1496; m/z (\%) $411\left(\mathrm{M}^{+}\right.$for $\left.{ }^{81} \mathrm{Br}, 10\right)$, $409\left(\mathrm{M}^{+}\right.$for $\left.{ }^{79} \mathrm{Br}, 9\right), 302(41), 236(7), 155$ (100), 127 (43) and 77 (16); $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 226.0$ ( $\varepsilon 14$ 350) and 292.6 (11 140) (Found: C, 58.6; H, 3.1; N, 3.5. Calc. for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{BrNO}_{4}$ : C, 58.56; H, 2.95; N, 3.41\%).

## Reaction of B-5-AQ with $\boldsymbol{N}$-p-tolylmaleimide 11

Following the general procedure, a chlorobenzene solution of B-5-AQ $(48 \mathrm{mg})$ and imide $\mathbf{1 1}(40 \mathrm{mg})$ was heated to give compound $12(60 \mathrm{mg}, 70 \%)$ as a powder, $\mathrm{mp} 250-251^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 2.37$ $(3 \mathrm{H}, \mathrm{s}), 3.50(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and 0.7$), 3.65(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and $1.5), 4.32(1 \mathrm{H}, \mathrm{dm}, J 7.3), 6.14(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and 0.7$), 6.37$ $(1 \mathrm{H}, \mathrm{dt}, J 8.4$ and 0.7$), 6.48(1 \mathrm{H}$, dd, $J 8.4$ and 7.3$), 6.97(1 \mathrm{H}$, s), $7.12(2 \mathrm{H}, \mathrm{dm}, J 8.4)$ and $7.23(2 \mathrm{H}, \mathrm{dm}, J 8.4) ; \delta_{\mathrm{C}} 21.2$, 42.8, 48.4, 53.3, 53.4, 123.2, 126.0 (2 C), 128.7, 129.8 (2 C), $130.4,130.8,139.2,140.2,149.4,158.4,170.7,174.2,191.8$ and 195.6; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1728,1669,1628,1539$ and 1256; $m / z(\%) 425\left(\mathrm{M}^{+}\right.$for $\left.{ }^{81} \mathrm{Br}, 29\right), 423\left(\mathrm{M}^{+}\right.$for $\left.{ }^{79} \mathrm{Br}, 27\right), 316$ (86), 285 (14), 236 (6), 155 (89), 133 (100), 127 (21) and 77 (14); $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 228.4$ ( $\varepsilon 17270$ ) and 289.4 (11 410) (Found: C, 59.2; H, 3.0; N, 3.6. Calc. for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{BrNO}_{4}: \mathrm{C}, 59.45 ; \mathrm{H}$, 3.33; N, 3.30\%).

## Reaction of B-5-AQ with acenaphthylene 13

Following the general procedure, a chlorobenzene solution of B-5-AQ ( 47 mg ) and acenaphthylene $\mathbf{1 3}(32 \mathrm{mg})$ was heated to give adducts $\mathbf{1 4}(9 \mathrm{mg}, 12 \%)$ and $\mathbf{1 5}(12 \mathrm{mg}, 15 \%)$. Compound 14 was a powder, $\mathrm{mp} 190^{\circ} \mathrm{C}$ (decomp.); $\delta_{\mathrm{H}} 4.12(1 \mathrm{H}, \mathrm{m}), 4.32$ ( $1 \mathrm{H}, \mathrm{d}, J 7.7$ ), 4.41 ( $1 \mathrm{H}, \mathrm{d}, J 7.7$ ), $6.00(2 \mathrm{H}, \mathrm{dd}, J 8.1$ and 1.8), $6.22(1 \mathrm{H}, \mathrm{d}, J 2.2), 7.00(1 \mathrm{H}, \mathrm{s}), 7.17(1 \mathrm{H}, \mathrm{d}, J 7.0), 7.33(1 \mathrm{H}$, d, J 7.0), $7.47(1 \mathrm{H}, \mathrm{d}, J 8.0), 7.48(1 \mathrm{H}, \mathrm{d}, J 8.0)$ and $7.67(2 \mathrm{H}$, dd, $J 8.0$ and 7.0 ); $\delta_{\mathrm{C}} 47.4,53.5,56.2,59.0,118.9,122.9,123.2$, 123.8, 124.2, 127.7, 128.8, 130.5, 130.7, 131.2, 135.2, 139.7, 140.0, 144.0, 151.0, 159.3, 195.2 and 203.4; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1715, 1663, 1544, 1497 and 1269; m/z (\%) $390\left(\mathrm{M}^{+}\right.$for $\left.{ }^{81} \mathrm{Br}, 45\right)$, 388 ( $\mathrm{M}^{+}$for ${ }^{79} \mathrm{Br}, 26$ ), 253 (14), 251 (22), 202 (27), 200 (16), 165 (100), 154 (79), 125 (96), 113 (61) and $101(40) ; \lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm}$ 280.6 ( $\varepsilon 17$ 230), 288.8 ( 18 150) and 299.8sh ( 12 920) (Found: $\mathrm{C}, 67.7 ; \mathrm{H}, 3.1$. Calc. for $\left.\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{BrO}_{2}: \mathrm{C}, 67.89 ; \mathrm{H}, 3.27 \%\right)$. Compound 15 was also a powder, $\mathrm{mp} 230^{\circ} \mathrm{C}$ (decomp.); $\delta_{\mathrm{H}} 4.34$ ( $1 \mathrm{H}, \mathrm{dm}, J 7.3$ ), 4.44 (1 H, d, $J 8.1$ ), 4.48 ( $1 \mathrm{H}, \mathrm{d}, J 8.1$ ), 5.49 $(1 \mathrm{H}, \mathrm{dd}, J 1.8$ and 0.7$), 6.45(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and 0.7$), 6.55(1 \mathrm{H}$, dd, $J 8.4$ and 7.3$), 6.88(1 \mathrm{H}, \mathrm{s}), 6.90(1 \mathrm{H}, \mathrm{m}), 7.31(1 \mathrm{H}, \mathrm{d}$, $J 7.0), 7.34(1 \mathrm{H}, \mathrm{d}, J 8.1), 7.44(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and 7.1$)$ and 7.58 ( 2 H , dd, $J 8.1$ and 2.6 ); $\delta_{\mathrm{C}} 46.9,53.0,56.5,58.7,120.5$ (2 C), 123.7, 124.3, 124.5, 127.3, 128.1, 130.9, 131.4, 134.4, 134.5, 139.8, 140.5, 142.0, 154.1, 156.2, 194.6 and 202.0; $v_{\max }(\mathrm{KBr})$ / $\mathrm{cm}^{-1} 1712,1663,1538,1495$ and 1272; $m / z(\%) 390\left(\mathrm{M}^{+}\right.$for ${ }^{81} \mathrm{Br}$, 52), 388 ( $\mathrm{M}^{+}$for ${ }^{79} \mathrm{Br}, 36$ ), 281 (89), 253 (100), 251 (42), 238 (31), 236 (23), 202 (65), 200 (29), 165 (20), 75 (25) and 63 (15); $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 278.9$ ( $\left.\varepsilon 16640\right)$, 286.1 (16 580), and 298.7sh (11 460) (Found: C, 68.05; H, 3.5\%).

## Reaction of B-5-AQ with 2,3-bis(methoxycarbonyl)-7-oxabicyclo[2.2.1]heptadiene 16

Following the general procedure, a chlorobenzene solution of B-5-AQ ( 47.4 mg ) and diester $16(63 \mathrm{mg})$ was heated to give adduct $17(60 \mathrm{mg}, 67 \%)$ as a powder, $\mathrm{mp} 182-183.5^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 2.60$ $(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and 0.7$), 2.70(1 \mathrm{H}, \mathrm{d}, J 8.1), 3.78(6 \mathrm{H}, \mathrm{s})$, $3.81(1 \mathrm{H}, \mathrm{dm}, J 7.7), 5.00(1 \mathrm{H}, \mathrm{d}, J 1.1), 5.66(1 \mathrm{H}, \mathrm{d}, J 1.1)$, $5.98(1 \mathrm{H}, \mathrm{d}, J 1.8), 6.18(1 \mathrm{H}, \mathrm{ddd}, J 8.4,1.8$ and 1.1$), 6.35(1 \mathrm{H}$, ddd, $J 8.4,7.7$ and 0.7 ) and $6.81(1 \mathrm{H}, \mathrm{d}, J 0.7) ; \delta_{\mathrm{C}} 42.6,50.3$, $52.5,52.6,54.1,56.4,81.7,86.1,122.8,129.9,130.4,139.2$, 145.0, 146.1, 151.1, 159.9, 162.1, 162.7, 194.2 and 200.4; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1740,1715,1670,1644,1541,1294$ and 1222; $m / z(\%) 448\left(\mathrm{M}^{+}\right.$for $\left.{ }^{81} \mathrm{Br}, 0.06\right), 446\left(\mathrm{M}^{+}\right.$for $\left.{ }^{79} \mathrm{Br}, 0.05\right), 416$ (7), 384 (6), 264 (50), 236 (99), 234 (100), 156 (52), 127 (68), 77 (36) and 63 (14); $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 232.0(\varepsilon 12670)$, 252.5 (10 040), 257.4 (9350) and 290.6 (15 440) (Found: C, 53.7; H, 3.6. Calc. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrO}_{7}$ : C, $53.71 ; \mathrm{H}, 3.38 \%$ ).

Reaction of B-5-AQ with 2,3-bis(methoxycarbonyl)-1,4-dimethyl-7-oxabicyclo[2.2.1]heptadiene 18
Following the general procedure, a chlorobenzene solution of

B-5-AQ ( 35 mg ) and dienophile $\mathbf{1 8}(35 \mathrm{mg})$ was heated to give adduct $19(27 \mathrm{mg}, 42 \%)$ as a powder, $\mathrm{mp} 186-187^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 1.61$ ( $3 \mathrm{H}, \mathrm{s}$ ), $1.64(3 \mathrm{H}, \mathrm{s}), 2.79(1 \mathrm{H}, \mathrm{d}, J 7.7), 2.83(1 \mathrm{H}, \mathrm{d}, J 7.7)$, $3.78(7 \mathrm{H}, \mathrm{m}), 6.02(1 \mathrm{H}, \mathrm{d}, J 1.8), 6.32(2 \mathrm{H}, \mathrm{ddm}, J 8.4$ and 1.8$)$ and $6.83(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 15.6,17.1,49.1,52.4(3 \mathrm{C}), 55.4,57.0,88.2$, $90.3,122.8,129.2,129.4,139.6,146.8,149.1,149.8,159.3$, 163.2, 163.8, 194.4 and $199.1 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1740,1717,1665$, 1547, 1264 and 1247; $m / z(\%) 476\left(\mathrm{M}^{+}\right.$for $\left.{ }^{81} \mathrm{Br}, 2.2\right), 474\left(\mathrm{M}^{+}\right.$ for ${ }^{79} \mathrm{Br}, 2$ ), 395 (2), 236 (5), 212 (91), 181 (51), 155 (100), 127 (27) and 77 (24); $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 227.7 \mathrm{sh}(\varepsilon 13070)$ and 288.5 (13 820) (Found: C, 55.9; H, 4.1. Calc. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BrO}_{7}$ : C, $55.60 ; \mathrm{H}, 4.03 \%$ ) and unchanged B-5-AQ (3 mg).

## Reaction of B-5-AQ with 1,4-epoxy-1,4-dihydronaphthalene 20

Following the general procedure, a chlorobenzene solution of B-5-AQ ( 15 mg ) and 1,4-epoxide $20(20 \mathrm{mg})$ was heated to give adduct $21(18 \mathrm{mg}, 75 \%)$ as a powder, $\mathrm{mp} 90-91^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 2.44(1 \mathrm{H}$, d, $J 8.1), 2.58(1 \mathrm{H}, \mathrm{d}, J 8.1), 4.37(1 \mathrm{H}, \mathrm{dm}, J 7.7), 5.14(1 \mathrm{H}, \mathrm{s})$, $5.82(1 \mathrm{H}, \mathrm{s}), 5.93(1 \mathrm{H}, \mathrm{dd}, J 2.2$ and 0.7$), 6.24(1 \mathrm{H}$, ddd, $J 8.4$, 7.7 and 1.1), $6.42(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and 0.7$), 6.81(1 \mathrm{H}, \mathrm{s})$ and 7.10-7.24 (4 H, m); $\delta_{\mathrm{C}} 44.9,52.3,54.9,57.3,79.6,84.8,119.0$, 119.3, 122.8, 126.9, 127.2, 129.9, 130.0, 139.1, 145.8, 146.2, 151.5, 160.1, 194.0 and 201.2; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1711,1667,1650$, 1564, 1460 and 1217; $m / z(\%) 382\left(\mathrm{M}^{+}\right.$for $\left.{ }^{81} \mathrm{Br}, 26\right), 380\left(\mathrm{M}^{+}\right.$ for ${ }^{79} \mathrm{Br}, 23$ ), 283 (3), 264 (12), 255 (34), 215 (18), 155 (100), 128 (10), 119 (73), 77 (25) and 63 (33); $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 226.6$ ( $\varepsilon$ 8290), 265.8sh (790), 273.8sh (10 100) and 287.9 (12 490) (Found: C, 62.7; H, 3.8. Calc. for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{BrO}_{3}: \mathrm{C}, 63.01 ; \mathrm{H}$, $3.44 \%$ ).

## Thermal reaction of B-7-AQ with ethene 1

A chlorobenzene solution ( $15 \mathrm{~cm}^{3}$ ) of B-7-AQ ( 20 mg ) was heated with ethene $\mathbf{1}$ in an autoclave ( 4 MPa ) at $150^{\circ} \mathrm{C}$ for 3 h . After the volatile material had been redistilled in vacuo, the residue was chromatographed on a silica gel column to give adduct $22(13 \mathrm{mg}, 63 \%)$ as crystals, mp $119-120^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 1.90$ $(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.1-2.25(3 \mathrm{H}, \mathrm{m}), 3.70(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 6.23(1 \mathrm{H}, \mathrm{d}$, $J 2.2), 6.29(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and 7.7$), 6.39(1 \mathrm{H}, \mathrm{dm}, J 8.4)$ and $6.74(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 22.1,32.3,52.0,55.3,122.5,128.8,134.9,136.8$, 153.2, 164.1, 190.7 and 197.3; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1698,1666$ and $1561 ; m / z(\%) 266\left(\mathrm{M}^{+}\right.$for $\left.{ }^{81} \mathrm{Br}, 4\right), 264\left(\mathrm{M}^{+}\right.$for $\left.{ }^{79} \mathrm{Br}, 2\right), 236$ (4), 185 (100), 157 (16), 128 (92) and 102 (15); $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm}$ 256.2 ( $\varepsilon 13500$ ), 262.2 ( 13300 ) and 280.2sh ( 9140 ) (Found: C, 54.3; $\mathrm{H}, 3.6$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrO}_{2}$ : C, $54.37 ; \mathrm{H}, 3.42 \%$ ) and unchanged B-7-AQ ( 1.5 mg ).

## Reaction of B-7-AQ with styrene 3

Following the general procedure, a chlorobenzene solution of B-7-AQ ( 47 mg ) and styrene $\mathbf{3}(40 \mathrm{mg})$ was heated at $130^{\circ} \mathrm{C}$ for 36 h to give adducts 23 ( $10 \mathrm{mg}, 15 \%$ ) and 24 ( $33 \mathrm{mg}, 49 \%$ ). Compound 23 was obtained as yellow crystals, mp $200-202^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.28(1 \mathrm{H}, \mathrm{ddd}, J 14.7,6.2$ and 4.4$), 2.77(1 \mathrm{H}, \mathrm{ddm}, J 14.7$ and 9.5 ), 3.48 ( 1 H , ddd, $J 9.5,4.4$ and 0.7 ), 3.81 ( 1 H , ddm, $J 8.1$ and 6.2), $6.28(1 \mathrm{H}, \mathrm{d}, J 2.2), 6.45(1 \mathrm{H}, \mathrm{dt}, J 8.4$ and 0.7$), 6.62$ $(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and 8.1$), 6.76(1 \mathrm{H}, \mathrm{s})$ and $7.2-7.35(5 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}} 34.1,52.5,52.8,58.1,121.9,128.0$ (2 C), 128.3, 128.5, 130.3 ( 2 C ), 132.8, 138.7, 141.2, 154.8, 164.2, 190.5 and 196.6; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1705,1669,1560,1491$ and 1254; m/z (\%) 342 $\left(\mathrm{M}^{+}\right.$for $\left.{ }^{81} \mathrm{Br}, 18\right), 340\left(\mathrm{M}^{+}\right.$for $\left.{ }^{79} \mathrm{Br}, 17\right), 262$ (2), 203 (4), 104 (100) and 78 (8); $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 226.7$ sh ( $\varepsilon 15300$ ), 256.6sh (9080) and 274.4sh (6600) (Found: C, 63.6; H, 4.0. Calc. for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{BrO}_{2}: \mathrm{C}, 63.36 ; \mathrm{H}, 3.84 \%$ ). Isomer 24 was obtained as yellow crystals, mp $170-172{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 2.27(1 \mathrm{H}$, dd, $J 14.7$ and $7.7), 2.69(1 \mathrm{H}$, ddd, $J 14.7,9.9$ and 7.3$), 3.49(1 \mathrm{H}, \mathrm{dd}, J 9.9$ and 7.7), 3.76 ( $1 \mathrm{H}, \mathrm{ddm}, J 8.4$ and 7.3 ), $6.33(1 \mathrm{H}, \mathrm{t}, J 8.4), 6.39$ $(1 \mathrm{H}, \mathrm{s}), 6.45(1 \mathrm{H}, \mathrm{d}, J 2.2), 6.57(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and 0.7$)$ and $7.20-7.40(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 31.0,48.9,52.3,60.6,122.9,127.7$, 128.0, 128.5, 128.6, 128.7, 129.7, 136.8, 137.8, 138.3, 151.4,
162.1, 190.7 and 197.1; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1704,1681,1644$, 1569,1492 and 1262; $m / z(\%) 342\left(\mathrm{M}^{+}\right.$for $\left.{ }^{81} \mathrm{Br}, 30\right), 340\left(\mathrm{M}^{+}\right.$for ${ }^{79} \mathrm{Br}, 25$ ), 261 (2), 236 (3), 104 (100), 91 (6) and 78 (4); $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 257.8(\varepsilon 11620)$ and 283.7sh (8350) (Found: C, 63.4; H, 3.9\%).

## Reaction of B-7-AQ with acrylonitrile 6

Following the general procedure, a chlorobenzene solution of B-7-AQ ( 47 mg ) and acrylonitrile $6(20 \mathrm{mg})$ was heated at $130^{\circ} \mathrm{C}$ for 36 h to give adducts $25(13 \mathrm{mg}, 22 \%)$ and $26(20 \mathrm{mg}$, $35 \%$ ). Compound 25 was obtained as a yellow powder, $\mathrm{mp} 228-$ $229^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 2.47(1 \mathrm{H}$, ddd, $J 14.7,7.0$ and 2.6$), 2.64(1 \mathrm{H}$, ddm, $J 14.7$ and 9.5$), 3.21(1 \mathrm{H}$, ddd, $J 9.5,2.6$ and 0.7$), 3.80(1 \mathrm{H}$, ddm, $J 8.4$ and 7.0$), 6.29(1 \mathrm{H}, \mathrm{d}, J 2.2), 6.52(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and $7.7), 6.61(1 \mathrm{H}, \mathrm{dd}, J 7.7$ and 0.7$)$ and $6.93(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 29.4,35.0$, 49.9, 55.0, 119.4, 123.6, 129.1, 133.1, 139.6, 149.3, 160.3, 188.6 and 194.2; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2238,1713,1660,1646,1569,1455$ and $1260 ; m / z(\%) 291\left(\mathrm{M}^{+}\right.$for $\left.{ }^{81} \mathrm{Br}, 0.7\right), 289\left(\mathrm{M}^{+}\right.$for $\left.{ }^{79} \mathrm{Br}, 0.5\right)$, 263 (2), 210 (100), 182 (28), 154 (22), 127 (32) and 75 (17); $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 251.5(\varepsilon 14810)$ and 279.7sh (10 990) (Found: C, 53.6; H, 2.9; N, 4.8. Calc. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{BrNO}_{2}$ : C, 53.82; H, 2.78; $\mathrm{N}, 4.83 \%)$. Isomer 26 was obtained as yellow needles, mp 197$199^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 2.40(1 \mathrm{H}$, ddd, $J 14.3,6.6$ and 0.7$), 2.66(1 \mathrm{H}$, ddd, $J 14.3,10.6$ and 6.6), $3.32(1 \mathrm{H}, \mathrm{dd}, J 10.6$ and 6.6$), 3.75(1 \mathrm{H}, \mathrm{br}$ $\mathrm{m})$, 6.35-6.45 $(3 \mathrm{H}, \mathrm{m})$ and $7.00(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 26.8,34.2,50.8$, $56.8,117.6,123.8,129.7,133.7,139.7,149.0,158.0,188.7$ and 194.6; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2242,1704,1678,1651,1564,1451$ and 1260; m/z (\%) $291\left(\mathrm{M}^{+}\right.$for $\left.{ }^{81} \mathrm{Br}, 0.2\right), 289\left(\mathrm{M}^{+}\right.$for $\left.{ }^{79} \mathrm{Br}, 0.2\right), 210$ (100), 182 (30), 154 (70), 127 (54) and 75 (21); $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm}$ 233.4sh ( 85510 ), 251.7 (15 020) and 281.6sh (4930) (Found: C, 53.7; H, 3.0; N, 4.5\%).

## Reaction of B-7-AQ with $N$-phenylmaleimide 9

Following the general procedure, a chlorobenzene solution of B-7-AQ ( 23.7 mg ) and imide $\mathbf{9}(18 \mathrm{mg})$ was heated to give adduct $27(18.5 \mathrm{mg}, 44 \%)$ as pale yellow needles, $\mathrm{mp} 253-$ $254{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 3.58(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and 0.7$)$, $3.68(1 \mathrm{H}$, dd, $J 8.4$ and 1.5$), 4.37(1 \mathrm{H}, \mathrm{dm}, J 7.3), 6.31(1 \mathrm{H}, \mathrm{d}, J 2.2), 6.49(1 \mathrm{H}$, dd, $J 8.4$ and 7.3), $6.58(1 \mathrm{H}, \mathrm{d}, J 8.4), 7.04(1 \mathrm{H}, \mathrm{s}), 7.25-7.30$ $(2 \mathrm{H}, \mathrm{m})$ and $7.45-7.5(3 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}} 43.4,52.4,53.2,54.8,122.1$, 126.2 ( 2 C ), 129.2, 129.3 (2 C), 129.4, 130.9, 132.6, 140.6, 154.0, 160.9, 171.3, 173.8, 188.5 and 192.1; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1716, 1697, 1650, 1561 and 1387; m/z (\%) $411\left(\mathrm{M}^{+}\right.$for $\left.{ }^{81} \mathrm{Br}, 3\right)$, $409\left(\mathrm{M}^{+}\right.$for ${ }^{79} \mathrm{Br}, 7$ ), 331 (42), 264 (17), 208 (17), 156 (60), 128 (100) and $77(93) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 255.0(\varepsilon 8550)$ and 291.5 sh (5410) (Found: C, 58.5; H, 3.1; N, 3.3. Calc. for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{BrNO}_{4}$ : C, 58.56; H, 2.95; N, 3.41\%).

## Reaction of B-7-AQ with 2,3-bis(methoxycarbonyl)-7-oxabicyclo[2.2.1]heptadiene 16

Following the general procedure, a chlorobenzene solution of B-7-AQ ( 24 mg ) and diester $\mathbf{1 6}(25 \mathrm{mg})$ was heated to give adduct $28(24 \mathrm{mg}, 53 \%)$ as a powder, $\mathrm{mp} 209-210^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.63$ (1 H, d, J 7.7), 2.76 ( $1 \mathrm{H}, \mathrm{d}, J 7.7$ ), $3.81(6 \mathrm{H}, \mathrm{s}), 3.83(1 \mathrm{H}, \mathrm{m})$, $5.01(1 \mathrm{H}, \mathrm{d}, J 1.1), 6.05(1 \mathrm{H}, \mathrm{d}, J 1.1), 6.16(1 \mathrm{H}, \mathrm{d}, J 2.2), 6.34$ $(2 \mathrm{H}, \mathrm{s})$ and $6.81(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 44.1,53.0,53.1,54.4,55.9,57.1$, 82.3, 86.8, 122.2, 129.2, 131.8, 139.6, 145.5, 146.1, 154.9, 161.7, $162.5,162.8,190.2$ and $194.9 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1754,1720,1670$, 1648, 1566, 1434, 1263 and 1232; $m / z(\%) 448\left(\mathrm{M}^{+}\right.$for ${ }^{81} \mathrm{Br}$, $0.04), 446\left(\mathrm{M}^{+}\right.$for $\left.{ }^{79} \mathrm{Br}, 0.02\right), 264$ (12), 262 (13), 236 (8), 234 (8), 183 (46), 155 (49), 153 (100), 127 (67), 77 (6) and 63 (8); $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 230.5(\varepsilon 15830), 258.6$ (10 615) and 271.2 (11 140) (Found: C, 53.5; H, 3.4. Calc. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{BrO}_{7}: \mathrm{C}$, 53.71 ; H, 3.38\%).

## Thermal reaction of compound 17

A xylene solution ( $5 \mathrm{~cm}^{3}$ ) of compound $\mathbf{1 7}(22.4 \mathrm{mg})$ was heated at $140^{\circ} \mathrm{C}$ in an ampoule for 24 h . The solvent was removed in
vacuo and the residue was chromatographed on silica gel to give retro-Diels-Alder product $29(11 \mathrm{mg}, 83 \%)$ as a powder, mp $163-165^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 4.30-4.36(1 \mathrm{H}, \mathrm{m}), 5.44(1 \mathrm{H}, \mathrm{dd}, J 2.2$ and 0.7$)$, $6.39(2 \mathrm{H}, \mathrm{dd}, J 7.0$ and 1.5), $6.59(2 \mathrm{H}, \mathrm{t}, J 7.0)$ and $6.79(1 \mathrm{H}, \mathrm{d}$, $J 0.7$ ); $\delta_{\mathrm{C}} 57.6,58.6,118.6,131.5$ (2 C), 133.4 (2 C), 139.7, 151.6, $159.5,187.8$ and $199.8 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1719,1675,1537$ and 1230; $m / z(\%) 264\left(\mathrm{M}^{+}\right.$for $\left.{ }^{81} \mathrm{Br}, 0.5\right), 262\left(\mathrm{M}^{+}\right.$for $\left.{ }^{79} \mathrm{Br}, 0.6\right)$, 236 (37), 234 (36), 156 (42), 127 (100), 77 (37) and 63 (39); $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 226.8$ ( $\left.\varepsilon 6340\right), 245.2$ sh (6220), 273.3 (11530), 284.4sh (9630) and 318.3 (4020) (Found: C, 54.8; H, 2.9. Calc. for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{BrO}_{2}$ : C, $54.78 ; \mathrm{H}, 2.68 \%$ ).

## Thermal reaction of compound 19

A xylene solution ( $3 \mathrm{~cm}^{3}$ ) of compound $19(12 \mathrm{mg})$ was heated at $140^{\circ} \mathrm{C}$ in an ampoule for 2 h . The solvent was removed in vacuo and the residue was chromatographed on silica gel to give retro-Diels-Alder product 29 ( $5.5 \mathrm{mg}, 83 \%$ ).

## Thermal reaction of compound 28

A xylene solution ( $5 \mathrm{~cm}^{3}$ ) of compound $\mathbf{2 8}(20 \mathrm{mg})$ was heated at $140^{\circ} \mathrm{C}$ in an ampoule for 24 h . The solvent was removed in vacuo and the residue was chromatographed on silica gel to give retro-Diels-Alder product $30(8.8 \mathrm{mg}, 75 \%)$ as a powder, mp $136-138{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 4.43(1 \mathrm{H}, \mathrm{m}), 5.62(1 \mathrm{H}, \mathrm{d}, J 2.2), 6.58(2 \mathrm{H}, \mathrm{dd}$, $J 7.4$ and 1.5), $6.67(2 \mathrm{H}, \mathrm{t}, J 7.4)$ and $6.84(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 58.8,59.1$, $116.7,131.5(2 \mathrm{C}), 135.8(2 \mathrm{C}), 138.0,154.1,159.5,187.8$ and 190.3; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1704,1678,1647,1566$ and $1218 ; \mathrm{m} / \mathrm{z}(\%)$ $264\left(\mathrm{M}^{+}\right.$for $\left.{ }^{81} \mathrm{Br}, 0.3\right), 262\left(\mathrm{M}^{+}\right.$for $\left.{ }^{79} \mathrm{Br}, 0.2\right), 236$ (10), 234 (9), 183 (48), 155 (33), 127 (100), 102 (14), 77 (19) and 63 (14);
$\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 226.6$ ( $\left.\varepsilon 8620\right), 254$ (8855) and 285.0sh (5150) (Found: C, $55.0 ; \mathrm{H}, 2.9 \%$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{BrO}_{2}$ : C, $54.78 ; \mathrm{H}$, $2.68 \%$ ).

## Acknowledgements

We thank Professor Klaus Hafner, Darmstadt Hochschule, Germany, for the generous gift of azulene, without which the present study could never have been carried out.

## References

1 L. T. Scott, M. D. Rozeboom, K. N. Houk, T. Fukunaga, H. J. Lindner and K. Hafner, J. Am. Chem. Soc., 1980, 102, 5169.
2 L. T. Scott and C. M. Adams, J. Am. Chem. Soc., 1984, 106, 4857.
3 T. Nozoe, H. Wakabayashi, K. Shindo, T. Kurihara, S. Ishikawa and M. Kageyama, Chem. Lett., 1995, 25; T. Nozoe, H. Wakabayashi, K. Shindo and S. Ishikawa, Chem. Lett., 1995, 27.

4 T. Nozoe and H. Takeshita, Bull. Chem. Soc. Jpn., 1996, 69, 1149.
5 H. Takeshita, Y. Wada, A. Mori and T. Hatsui, Chem. Lett., 1973, 335; S. Itõ, Y. Fujise, T. Okuda and Y. Inoue, Bull. Chem. Soc. Jpn., 1966, 39, 1351; R. C. Cookson, B. V. Drake, J. Hudec and A. Morrison, Chem. Commun., 1966, 15; G. Mehta and S. R. Karra, J. Org. Chem., 1989, 54, 2975; H. Takeshita, H. Nakashima, S. Sugiyama and A. Mori, Bull. Chem. Soc. Jpn., 1988, 61, 573; T. S. Cantrell, Tetrahedron Lett., 1975, 907.

6 T. Nozoe, H. Takeshita, Y. Z. Yan and A. Mori, Synlett, 1995, 375.

7 G. R. Tian, S. Sugiyama, A. Mori and H. Takeshita, Chem. Lett., 1987, 1557; Bull. Chem. Soc. Jpn., 1988, 61, 2393; H. Takeshita, A. Mori, Y. Kurahashi and Y. Nagano, Chem. Express, 1993, 8, 109.

Paper 8/04846K

